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Inverse Scattering Method for One-Dimensional
Inhomogeneous Lossy Medium by Using

a Microwave Networking Technique
Tie Jun Cui and Chang Hong Liang

Abstract— The formulation of reflection coefficients from an
inhornogeneous lossy medium illuminated by TE and TM waves
is approximately derived, in closed form, by using a microwave
network method. From the formulation, a novel inverse scatter-
ing scheme to reconstruct simultaneously the permittivity and
conductivity profiles, is proposed. Thk scheme is suitable for
both continuous and discontinuous profiles, under both the weak
scattering and strong scattering conditions. It has also been
shown that when the conductivity of the medhtm equals zero,
the reconstructed result of this scheme will reduce to the one in
[14]. Numerical and closed-form reconstruction examples show
the valklity of the scheme.

I. INTRODUCTION

F

OR THE reconstruction of one-dimensional inhomoge-
neous lossy medium, many authors have investigated

various methods [1]-[ 13]. These methods may be generally
classified into two approaches. The first approach is inverse
mapping. Generalization or modification of Gel’ fand-Levitan

type equation is representative of this approach. The best fitting
method or the iterative procedure is the second approach.

This approach is usually formulated by the source-type in-

tegral equation which related the constitutive parameter of the
medium to the scattering field.

In this paper, we will investigate the inverse scattering
problem by using a microwave networking technique. From
the viewpoint of the microwave network, we first derive the
reflection coefficients of an inhomogeneous 10SSYmedium illu-
minated by TE and TM waves approximately in closed forms,
from which a novel inverse scattering scheme to reconstruct
simultaneously the permittivity profile and the conductivity

profile is proposed, also in closed form. This scheme can
be used for both continuous and discontinuous media. It has
been shown that the reconstructed result of the scheme will
reduce to the one in reference [14] when the conductivity

of the medium equals zero. A remarkable instance of the
novel scheme with the published closed-form approximations
is that the scheme is not only suitable for weak-scattering
condition, but also suitable for strong-scattering condition.
Reconstruction examples show the applicability of the scheme.
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Fig, 2, The 10SSYmedium whose permittivity profile is continuous at the
interface r = O.

II. DERIVATION OF THE REFLECTION COEFFICIENTS

We consider a half-space inhomogeneous lossy medium
shown in Fig. 1. A time harmonic electromagnetic plane wave
(TE polarized or TM polarized) of wave number k is incident
from the left free space upon the medium at an oblique alngle
L9.The permittivity relative to free space and the conductivity
are functions of the geometric distance z. r(k, 6) represents
the frequency-domain reflection coefficient of the medium.

To obtain the reflection coefficient, we discuss the following
three stages.

A. The Perrnittivity Projile is Continuous in the Whole Space

In this case, the medium is illustrated in Fig. 2.
For an arbitrary point Z(Z > O) in the $-axis, the complex

relative permittivity of the 10SSYmedium is

.C7(x) rl@(x)
;(z) =@-r-–-& =+z)-,1~ (1)

where vo = ~= = 1207rQ is the wave impedance Of the
free space.

Make a differential increment dx, and suppose that the
relative permittivities and the conductivities at points z ancl Z+

dz are e(z), e($) +dc($), u(z) and o(x) +da(x), respectively.
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From the electromagnetic wave theory [15] and the classical
idea of Bremmer [16], [17], the Fresnel differential-reflection
coefficients caused by the region [%, x + CZZ]are

~rl = n(z) – n(z + A)

‘n(z) + n(z + (h)
(2)

which correspond to TE polarized wave and TM polarized

wave, respectively, where n(z) = ~/:(z) – sin20,

To derive the reflection coeffici&ts at the interface, we
consider the transmission coefficients for TE wave and TM
wave of the thin layer between x and
approximation, these coefficients are given

dT~ exp [–jkn(x)dx]

dT~ exp [–jkn(~)d~]

where

x + dz. In first
by

(4)

(5)

dT: = 2n(x)

n(z) + n(z + h) = [1+-1-’ “)

dT~ = 2n(x) @(X):(X+ dx)

n(z);(x + dx) + n(z + dz);(~)

{

= ~ + den;] ‘1

2n(z):($) }
(7)

in which

dn(x) = [n(z+ dx) – n(x)]+ 0(dz2), . . . . (8)

Since (4) and (5) are only accurate up to O(dx), it is
convenient to write (6) and (7) in the forms that are more
suitable for repeated multiplication

‘T~=exp{-%#}+O(d’2)“)

{ }

1 den;] + o(dx2)
dT~ = exp ––

2 n(z);(x)
(lo)

Carrying out the multiplication for all layers in the region [0,
x] then leads to the first order WKB transmission coefficients
from O to z in a continuous medium

‘~=exp{-%%?}ex+’klzn( x’)d$l ’11)

In the meantime, the transmission coefficients for TE wave
and TM wave of the thin layer from x + dz to z are similarly
derived

‘T~=exd%w+o@’2)’13)

{

1 den;]
dT~ = exp -

2 n(x);(x) 1
+ O(dx2) (14)

which give the first order WKB solutions from x to O as

‘:=exp{il%$?}exp[-+x’’dx’l ’15)

{sT! = exp : ‘d[n(x’E(z’)]}ex+dzn@)d42 ~ n(x’)e(x’)
(16)

Hereby the differential reflection coefficients of the medium
at x = O caused by the thin layer between z and x + dx are
obtained by neglecting the high order infinitesimal

“L=TiaLT&=drLexp[-’2klzn(z’)dx’l ’17)

[ bx’’dx’l “8)
d~ll= T~drllT~= drll exp –j2k

which can be rewritten as a common form

“=drexp[-~2k.b)dx’l ’19)
Since the permittivity profile is continuous at the interface of
free space with the medium, the total reflection coefficient of

the medium in frequency domain can be written as

Under a high frequency and low-loss approximation

r/oa(x)

k[c(r) – sin28] <1
(21)

we have

‘(x) ‘ --~2kJ*. (22)

Then (2) and (3) turn to

dp ~ – de(x)

4[.5(x) – sin2f9]
(23)

drll ~ [~(x) - 2sin20]de(z)

4E(z)[E(z) – sin26]
(24)

and the reflection coefficient (20) turns

/

+Cc dr
?-(k, (3) = ~ exp [–a(z)] exp [–j2ky(x)] dx (25)

o

where

J
/a(z)=‘xSdx’ (26)

y(x) = ~’d-dx. (27)
. .,, .JU
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Let

It = 2y(x) = 2 ‘~-dx’ (28)
o

then (25) is converted into

J
+CO1

r(k, !9) = ~ exp [–ct(x)]e-~~t dt
o 2J- ‘x

(29)
by the definition of the Fourier transform, the inverse Fourier
transform of r-(k, 6) is directly achieved from (29)

R(t, 0) =
exp[–a(s)] d’

(30)
243 ‘x

where the relation between t and x is shown in (28). Consid-
ering (23) and (24), we have

R1(t, 0) = –
exp[–a(x)] de(x)

8[c(x) – sin2@]slz dx
(31)

Rll (t, 6) = –
[e(r) -2 sin20] exp [-es(z)] de(x)

8e(x)[e(z) – sin26]3t2 dx
(32)

which are the inverse Fourier transforms of the reflection

coefficients of the medium shown in Fig. 2, illuminated by
TE wave and TM wave, respectively.

B. The Perrnittivity Projile has a Discontinuity

at the Inteflace x = O

Fig. 1 shows an example of this type medium, From Fig, 1,
the permittivity profile has a discontinuity at the interface
~ = O, i.e., c(O) # 1. By the viewpoint of microwave network,
this discontinuity is equivalent to a microwave transmission
line junction, whose equivalent network is shown in Fig. 3(a)

In Fig. 3(a), the parameters in the frame are the S scattering

matrix of the network, TO(k, 0) represents the reflection coef-
ficient of a continuous lossy medium shown in Fig. 3(b). In
detail, under the high-frequency and low loss approximation
(22)

Cos 0 – /()eO –sin20
R;l z

Cos’+-

(33)

which corresponds to TE wave and TM wave, respectively.
According to the microwave network theory, we obtain from

Fig. 3(a)

(1- l?;,)?’.(k, e)
T-(k, 0) = I& +

1 + Ro17-()(k,0) ‘
(35)

Thus

(36)

I

8(X)

“mro(ko-=
(a) (b)

Fig. 3. The equivalent transmission line junction network of the perrnittivity
profile discontinuity and a continuous lossy medkrm whose permittivity profile
is continuous at the interface z = O.

‘1213

, ,
10 IL x

Fig. 4. A dkcontinuous lossy medium whose permittivity profile has two
dkcontinuities at z = O and x = L.

On the other hand, r-. (k, O) is the reflection coefficient of
the continuous medium shown in Fig. 3(b) whose permittivity

profile is continuous at the interface z = O. So from the similar

derivation to Case A, we can directly write out

R&(t, $)=–
exp [–a(x)] de(x)

8[6(x) – sin20]3/2 dx
(37)

R~(t, (3) = –
[~(x) -2 sin26] exp [-Q(x)] de(x)

8c(z)[c(x) – sin20]3/2 dx
(38)

where R: (t, 19) and R! (t, 19) are the inverse Fourier trans-
forms of r+ (k, .9), respectively.

In fact, when c(O) = 1 then ROI = O, further TO(k, t5’)1 =

T(k, 4). Thus (37) and (38) reduce to (31) and (32), That
is to say, (37) and (38) are the general forms of reflection

coefficients,

C. The Permittivity Projile has Two Discontinuities
at the Interj4aces x = O and x = L

We consider a general case. The permittivity profile has
two discontinuities at the interfaces x = O and z = L, as
shown in Fig. 4. In this case, the medium can be equivalent
to two microwave transmission line junctions cascaded with a
microwave network, as shown in Fig. 5. Here, the first junction
network is the same as that in Fig. 3(a). The second is the
equivalent network of the second discontinuity at x = L, and

R.=Jzi==d=

12@==+ J== ’3’)

corresponding to TE wave and TM wave, respectively.
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rO(k,9)

Fig. 5. The equivalent microwave network of the discontinnons lossy medium.

Similarly, from (15) and (16), we have
I s’(x)

&(L)
8(0)

T L F

Fig. 6. A continuous lossy medinm,

In Fig. S, s,j (k) represents the S scattering parameter of ‘the
network which describes the continuous permittivity profile
shown in Fig. & Through the microwave network theory,
S1l (k) is just the reflection coefficient of the continuous
medium shown in Fig. 6 when the electromagnetic wave
is incident from the left to the right. So carrying out the
discussion in Case A, we have

/

Ld17
Sll(k) = — exp [–a(x)] exp [–j2ky(z)] dx

~ dx
(41)

where ~ = O when x > L has been considered.

Similarly, szz (k) is the reflection coefficient of the continu-
ous medium when the electromagnetic wave is incident from
the right to the left. Hereby

/

Ldr
Szz(k) = – ~ ~ exp {–[a(L) – a(z)]}

.exp {–j2k[y(L) – y(z)]} dr (42)

where a(L) and y(L) are expressed by (26) and (27) when
z = L. Substituting (23) and (24) into (41) and (42) yields

the expressions of S1l (k) and S22(k) for TE wave and TM
wave, respectively.

On the other hand, SZ1(k) represents the transmission co-
efficient of the continuous medium from z = O to z = L, so
we obtain from (11) and (12)

s~2=exp{:’~#}exp’45)

Under the high frequency and low loss approximation, (22),
the above equation can be written as

S12(k)SM(k) = exp [Q(L)] exp [–j2ky(L)] (48)

which is suitable for both TE wave and TM wave.
Through the microwave network theory, we obtain from

Fig. 5

Rlzslz(k)szl(k)
?-O(I$>0) = Sll(k) +

1 – Rlzszz(k)
(49)

R), + T-()(k,0)
r(k, 0) =

1 + Rolr’o(k, 8)
(50)

which are the reflection coefficients of the general medium. To
derive the inverse Fourier transform of To(k, O), we rewrite
(49) as

?“O(k, 0) = Sll(k) + R12s12(k)s21(k)

“[l + RBSz?(k) + R;,s;,(h) + “ “ “1. (51)

Taking the inverse Fourier transform of the above equation,
and considering the expression (48), we have

Ro(t, O) = Sll(t) + R12 exp [–a(L)]{d(t) + R12S22(t)

+R;2S;2(t) * S;2(t) + . ~.}* $(t – 2’) (52)

where Ro(~, @), Sll(t) and S.Z(t) are the inverse
Fourier transforms of r. (k, 0), SII (k) and szz (k), where
exp [– a (L)] 6(t – 1’) is the inverse Fourier transform of
S12(k)s21 (k), where b(t) is Dirac-ti function, “*” represents
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convolution, and where

Through
we infer

/

L

T = 2y(L) = 2 ~Gdx. (53)
o

the convolution theory f(t) * fi(t – T) = f(t – T),
from (52)

Ro(t, (3) = Sll(t) when O < t < T.

Considering (41), yield

Sll(t) = exp [–a(z)] dr

2 ~q dx

which gives

l?+(t, q = –
exp [–u(x)] d~(x)

8[c(~) – sin2d]3/2 dx

R~(t,0) = –
[c(~) -2 sin’d] exp [-a.(z)] de(z)

8~(z)[e(x) – sin20]3/2 dx

when O<t <T.

III. RECONSTRUCTION OF THE LossY MEDIUM

(54)

(55)

(56)

(57)

A. Reconstruction of the Permittivity Profile

In the inhomogeneous lossy medium shown in Fig. 1, if
the conductivity profile is known, we will reconstruct the
permittivity profile by using either the reflection coefficient of
TE incident wave or TM incident wave, We select the former.
From (37), we have

de(x)
(58)R$(t, 19)exp [~(x)ldt= – ~[c(x)_ sin2/j]

where (28) is considered. Integrating the above equation,
yields

c(x) = sin’d + [c(O) – sin2d]

.exp
{/

–4 ‘Ri(t’,6)exp [a(d)] dt’1(59)
o

which is the reconstruction formula of the permittivity profile,
where t and a(z) are expressed as (28) and (26), respectively.

When the permittivity profile of the lossy medium has a
discontinuity at c = L, the inverse Fourier transforms of the
reflection coefficients are of the same forms as (37) and (38)
in the region O < t ~ T, as shown in (56) and (57). So the
inversion formula (59) is also suitable for the discontinuous
medium.

From the form of (59) we will note that it is a coupling
equation, because the right term of the equation contains the
unknown function C(S). But in fact all the used E(x’ ) in the
right term satisfy x’ < x, which have been reconstructed.
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Fig. 7. Reconstruction resnlts (solid lines) and their comparisons with exact
profiles (dashed lines). (a) n = 1, qou(.r) = 0,1, (b) n = 2. VOIT(.Z) = 0.1,
(c) n = 3, mu(z) = 0.1.

Thus, so long as c(O) is known, e(z) will be complel:ely
reconstructed.

We cite a special case. When O = 0° and m(x) = O, (59)
will reduce to

[ h~(’’)d”l ’60)
e(z)= E(O)exp –4

Furthermore, when e(0) = 1, then Rol = O, and R~(t) =
RL (t), the above equation turns

‘(z)= exp[-41RL(’’)d”l ’61)
which is just the reconstruction formula in reference [14].

B. Reconstruction of both the Permittivity
and Conductivity Projiles

For the inhomogeneous lossy medium, if the permittivity
and conductivity profiles are simultaneously reconstructed,
both reflection coefficients of TE incident wave the TM
incident wave are used. From (37) and (38), we obtain

2 sin2@R~(t, d)
c(x) =

l?+(t, 6)+ Rg(t, 0)
(62)
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Fig. 8. Reconstruction results (sohd lines) and their comparisons with exact
profiles (dashed lines). (a) qO (r) = 0.1, (b) qO a(x ) = 0.2.

[1
exp [–a(x)] = –8R~(t, O)[C(Z) – sin2@]3f2/ % . (63)

Considering (26), we have

vqoo(z) = – e(z) – sm @-&

“{ H 1
172R$(t, d)[~(x) – sin2d]3/2/ % (64)

where, the relationship between t and x is also shown in (28).
Similarly, the inversion formulas (62) and (64) are also

suitable for the discontinuous lossy medium.

C. Reconstiwction of the Permittivity at the Interface

In the reconstruction formulas (59), (60), (62), and (64), the
right terms contain &(0) directly or implicitly, Therefore, if
c(x) and o-(x) are completely reconstructed, E(O) should be
inverted first.

For a lossless medium, Hopcraft and Smith [18] have
presented a method to reconstruct .s(0). We extended the
method to the lossy case in [19].

It has been shown that, in the high frequency region, plotting
the real and imaginary parts of the reflection coefficients of
the lossy medium shown in Fig. 4 as a function of the wave
number k yields a circle. From the intercept a and the radius
b of the circle, the permittivity at the interface, c(O) can be
reconstructed. When the incident wave is TE polarized, the
inversion formula is [19]

()l–q 2
.s(0) = sin20 + cos26’ —

l+q
(65)

where

q=4[(b- a~-l)+/(b -a2-1)2-4a2] (66)

2001 I I I I I ! 1 1 1 I

000 020 040 060 080 100 120 140 160 !80 ?00

DISTANCE (m)

(a)

200 I I 1 I 1 1 I I 1 1 I

000 02o 040 060 080 100 120 140 160 180 200

DISTANCE (m)

(b)

Fig. 9. Reconstruction results of discontinuous lossy medium (solid lines)
and their comparison with exact profiles (dashed lines). (a) vo a(r) = 0.1,
(b) qoo(r) = 0.1.

which is suitable for both continuous profile and discontinuous
profile.

IV. RECONSTRUCTIONEXAMPLES

In this section, several examples are used to demonstrate the
inverse scattering scheme. In these examples, the left spaces
of the reconstructed media are all free space.

First, we consider the reconstruction of the permittivity
profile by using (59). The reflection data are simulated by
a numerical method from the exact profiles

and the inverse Fourier transforms are obtained by FFT
program. When we set n = 1, 2, and 3, the reconstructed
results are shown in Fig. 7. Here, the medium is divided into
100 parts to compute the reflection coefficients numerically,
and the wave number is chosen as k E [0, 10]. In the FFT
program, we set fV = 1024. Fig. 7 also gives the exact profiles
for comparisons.

From Fig. 7, our reconstruction results are accurate in any
case, including the case of strong scattering. However, Fig. 7
only gives the reconstructions of monotonous profiles. Next,
we consider a general case where the reflection coefficients
used for reconstruction are simulated by numerical method
from the exact profile

e(x) = AX2 + Bx + C, (68)

When the parameters A, B, and C’ are chosen as different
values, the reconstructed profiles and exact profiles are shown
in Fig. 8.
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Fig. 10. The calculated reflection data (solid lines) and the given reflection
data (dotted lines). (a) TE wave, (b) TM wave.

From Fig. 8, the reconstruction results are accurate no
matter when the permittivity profile has a maximum or a
minimum, as demonstrated in Fig. 8.

Both examples above are concerned for continuous profiles.

If the permittivity profile has a discontinuity at z = L, the
reconstmction results from (59) are displayed in Fig. 9.

From Fig. 9, the reconstructed profiles are also accurate

compared with the given exact profiles in any case. That is to
say, the inversion formula (59) is suitable for both continuous
profile and discontinuous profile under the weak scattering

condition and strong scattering condition.
Next, we consider the simultaneous reconstruction of per-

mittivity and conductivity profiles by using (62) and (64). In
this case, both the reflection coefficients of TE wave and TM
wave should be used. To show the availability of the two

inversion formulas, we first consider an artificial closed form

example.
Suppose the reflection coefficients of an unknown 10SSY

medium are expressed as

(69)

where 1 and II represent TE polarized and TM polarized,

respectively. And

@ = cos $ —a2

cos $ + a2
(70)

~11= ~a4 + sinz 0) COS6’– az
(71)

(a’ +sin20) cos 13+ a’

IL=–
/

‘zexp (–ax)
exp

[
–j: kz(z2 + 3a2)] dx (72)

o X2 + a2
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Fig. 11. Reconstmction results (solid lines) and their comparisons with exact
profiles (dashed lines) when n = 1. (a) Permittivity, (b) conductivity, (c)
permittivity, and (d) conductivity.

Ill =
/

~ (Z2 + a2)2 - sin2t9 zexp (-am)

o (Z2 + a2)2 + sin20 X2 + U2

.exp
[ 1
–j~kz(z2+ 3a2) dx [73)

where a > 0, L > 0, a > 0, they are all constants. Through
(66) and (65), we obtain

6(0) = a4 + sin20. (74)

Substituting it into (36) yields

r+(k, 0) = IL, T/j(k,69= Ill. (7p
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Fig. 12. ReconstructIon results (sohd hnes) and their comparisons with exact
profiles (dashed lines) when n = 2. (a) Permittivity, (b) conductivity.

Using a variable transformation, we obtain from (72) and (73)

R;(t, L9)=–
zexp(–az)2

2(z2 + az)
(76)

(Z2 + a’)’ - sin20 zexp (-cm)
R~(t, 0) = (77)

(Z2 + a2)2 + sin2d 2(X2+ a2)2

in which

t = ~z(z2+3a2). (78)

Substituting (76) and (77) into (62) and (64), we can derive

E(Z) = (Z2 + a2)2 + sin2/3 (79)

r)oa(x)= Cl(z’ + a’) (80)

which are the permittivity and conductivity profiles corre-
sponding to the reflection coefficients (69). When a = 3, a =
0.2, L = 1 and 0 = 45°, we calculate the reflection coef-
ficients from the profiles given in (79) and (80) by using a
numerical method. The calculated reflection data and the given
reflection data by (69) to (72) are displayed in Fig. 10, which
fit very well. This artificial example shows that the inversion
formulas (62) and (64) are correct.

To show the applicability of the above formulas, we consider
a numerical example. The reflection coefficients used for
reconstruction are simulated from the following exact profiles

When n = 1 and 2, the reconstructed profiles are displayed in
Figs. 11 and 12, where we set O = 60°, k E [0, 10].

From Figs. 11 and 12, the reconstructed profiles are much

accurate compared with the exact profiles when the loss is low.
As the loss of the medium equals zero, the inversion formulas

are also true.

V. CONCLUSION

In this paper, we proposed a novel inverse scattering scheme
to reconstruct the permittivity profile and the conductivity
profile of an inhomogeneous lossy medium by using a mi-
crowave networking technique. This scheme is suitable for
both continuous and discontinuous profiles. Reconstruction
examples show that the novel scheme is accurate, even if
strong scattering conditions are satisfied.
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