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Inverse Scattering Method for One-Dimensional
Inhomogeneous Lossy Medium by Using
a Microwave Networking Technique

Tie Jun Cui and Chang Hong Liang

Abstract— The formulation of reflection coefficients from an
inhomogeneous lossy medium illuminated by TE and TM waves
is approximately derived, in closed form, by using a microwave
network method. From the formulation, a novel inverse scatter-
ing scheme to reconstruct simultaneously the permittivity and
conductivity profiles, is proposed. This scheme is suitable for
both continuous and discontinuous profiles, under both the weak
scattering and strong scattering conditions. It has also been
shown that when the conductivity of the medium equals zero,
the reconstructed result of this scheme will reduce to the one in
[14]. Numerical and closed-form reconstruction examples show
the validity of the scheme.

I. INTRODUCTION

OR THE reconstruction of one-dimensional inhomoge-

neous lossy medium, many authors have investigated
various methods [1]-[13]. These methods may be generally
classified into two approaches. The first approach is inverse
mapping. Generalization or modification of Gel fand—Levitan
type equation is representative of this approach. The best fitting
method or the iterative procedure is the second approach.
This approach is usually formulated by the source-type in-
tegral equation which related the constitutive parameter of the
medium to the scattering field.

In this paper, we will investigate the inverse scattering
problem by using a microwave networking technique. From
the viewpoint of the microwave network, we first derive the
reflection coefficients of an inhomogeneous lossy medium illu-
minated by TE and TM waves approximately in closed forms,
from which a novel inverse scattering scheme to reconstruct
simultaneously the permittivity profile and the conductivity
profile is proposed, also in closed form. This scheme can
be used for both continuous and discontinuous media. It has
been shown that the reconstructed result of the scheme will
reduce to the one in reference [14] when the conductivity
of the medium equals zero. A remarkable instance of the
novel scheme with the published closed-form approximations
is that the scheme is not only suitable for weak-scattering
condition, but also suitable for strong-scattering condition.
Reconstruction examples show the applicability of the scheme.
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Fig. 1. A half-space inhomogeneous lossy medium.
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Fig. 2. The lossy medium whose permittivity profile is continuous at the
interface x = 0.

II. DERIVATION OF THE REFLECTION COEFFICIENTS

We consider a half-space inhomogeneous lossy medium
shown in Fig. 1. A time harmonic electromagnetic plane wave
(TE polarized or TM polarized) of wave number & is incident
from the left free space upon the medium at an oblique angle
8. The permittivity relative to free space and the conductivity
are functions of the geometric distance z. r(k, §) represents
the frequency-domain reflection coefficient of the medium.

To obtain the reflection coefficient, we discuss the following
three stages.

A. The Permittivity Profile is Continuous in the Whole Space

In this case, the medium is illustrated in Fig. 2.
For an arbitrary point z(z > 0) in the z-axis, the complex
relative permittivity of the lossy medium is

. .o(x) oo (x)

t(a) = e(@) — T2 = elw) = 1 M
where 1o = /1o/€0 = 1207 is the wave impedance of the
free space.

Make a differential increment dx, and supposc that the
relative permittivities and the conductivities at points z and z+
de are €(z), e(x)+de(x), o(z) and o(x)+do(x), respectively.
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From the electromagnetic wave theory [15] and the classical
idea of Bremmer [16], [17], the Fresnel differential-refiection
coefficients caused by the region [z, 2 + dx] are

n(z) — n(z + dx)

ars = n(z) + n(z + dz)

@

é(z + dx)n(z) — e(z)n(z + dx)
&z + dz)n(z) + E(z)n(z + dx)
which correspond to TE polarized wave and TM polarized
wave, respectively, where n(z) = 1/&(z) — sin4.

To derive the reflection coefficients at the interface, we
consider the transmission coefficients for TE wave and TM

wave of the thin layer between z and x + dz. In first
approximation, these coefficients are given by

dril = (3)

dT= eap [~jkn(z)da] @
dT\, exp [~ jkn(z)dz)] 5)
where
on(x) 3 dn(z)] "
aT=, = n(z) + n(z + dz) [ Zn(a:)] ©
I 2n(z)\/é(z)e(x + dx)
4I%, n(z)é(z + dz) + n(:v1+ dxz)é(x)
_ din(z)é(z)] |~
{1+ ) ”
in which
dn(z) = [n(z +dz) — n(z)] + O(dz?), ---.  (8)
Since (4) and (5) are only accurate up to O(dz), it is

convenient to write (6) and (7) in the forms that are more
suitable for repeated multiplication

L _ ex _ldn(m) 2

Tt = p{ 2n($)}+0(d ) )
| = exp { . LAM@)E()] 2

7! = p{ 2 n(n)e() }+O(d ). (10)

Carrying out the multiplication for all layers in the region [0,
z] then leads to the first order WKB transmission coefficients
from O to z in a continuous medium

TL-exp{——/ dnlz ')}exp[ Jk/

d[n(z")é(z")] “
T“ _ / el rARSdr/ | 3 / ’ 7
exp{ 2y “nl i) exp |—jk ; n(z") dz'|.
(12)
In the meantime, the transmission coefficients for TE wave

and TM wave of the thin layer from z + dz to x are similarly
derived

dx} (11)

dTt = exp {1 dn(z) } + O(d=z?) (13)

2 n(z)
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1 dfn(@)é(s)]

2 n(x)é(z) (14)

dTl = exp { } + O(dz?)

which give the first order WKB solutions from z to 0 as

TL = exp{ /m (( ,/)) } exp [—jk/ozn(a:’) d:r’} (15)

! x
T = exp{ / M}exp {—jk/ n(z') dx’].
o n()é) 0
(16)
Hereby the differential reflection coefficients of the medium

at z = 0 caused by the thin layer between z and z + dx are
obtained by neglecting the high order infinitesimal

x
drt = TLdTTE = dTtexp {—jZk/ n{z") dw’] amn
0

drl = Tl g7l = grilexp { §2k / dm] (18)
which can be rewritten as a common form
dr = dlexp [ j2]<:/ dw} (19)

Since the permittivity profile is continuous at the interface of
free space with the medium, the total reflection coefficient of
the medium in frequency domain can be written as

+oo @
r(k, 6) = / Z—I‘ exp [—jZk/ n(z") dx’} dz.  (20)
0 & 0

Under a high frequency and low-loss approximation

0o (x)
kle(z) — sin*f] < 1 @b
we have
n(@) % \/e(s) —sin2 — j—1IE) ()
2ky/e(z) — sin®@
Then (2) and (3) turn to
de(z)
art s~
4[e(z) — sin’6] 3)
I le(z) = 2sin6)de(x)
i~ 4e(z)[e(x) — sin?6] @
and the reflection coefficient (20) turns
teodr ,
r(k, ) = / = €XP [—a(z)]exp [—j2ky(z)| dz  (25)
0 x
where
o(z) = / __mol@) (26)
\/€(x") — sin?
= w\/ ") ~ sin®6 da’. 27
y(z) /0 e(z') — sin“f dz 27)
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Let

(28)

t=2y(z) = 2/ 1/ e(x') — sin® dz’
0

then (25) is converted into

—+oo
r(k, 6) = /
\/ — sin 0
(29)

by the definition of the Fourier transform, the inverse Fourier
transform of r(k, 6) is directly achieved from (29)

el-a(z)] _dr

24/¢€(z) — sin’6 dz
where the relation between ¢ and « is shown in (28). Consid-

ering (23) and (24), we have

exp[—a(z)]  de(z)
8le(z) — sin®0)3/2 dz

exp[ a(z)]e % dt

R(t, 6) =

(30

RY(t, 0) = —

3D

_e(z) —2 sinf] exp [—a(z)] de(x)

R”(t’ b)= 8e(x)[e(z) ~ Sin29]3/2 dz

(32)

which are the inverse Fourier transforms of the reflection
coefficients of the medium shown in Fig. 2, illuminated by
TE wave and TM wave, respectively.

B. The Permittivity Profile has a Discontinuity
at the Interface x = 0

Fig. 1 shows an example of this type medium. From Fig. 1,
the permittivity profile has a discontinuity at the interface
z = 0, ie., €(0) # 1. By the viewpoint of microwave network,
this discontinuity is equivalent to a microwave transmission
line junction, whose equivalent network is shown in Fig. 3(a)

In Fig. 3(a), the parameters in the frame are the S scattering
matrix of the network; 7o(k, ) represents the reflection coef-
ficient of a continuous lossy medium shown in Fig. 3(b). In
detail, under the high-frequency and low loss approximation

(22)
/ -2
RE = cosf — 4/€(0) — sin”

(33)
" cos 0 + 4/€(0) — sin? @
Rl _ €(0)cos B — 4/€(0) — sin4 34

01 =
€(0) cos § + /€(0) — sin” 4

which corresponds to TE wave and TM wave, respectively.
According to the microwave network theory, we obtain from
Fig. 3(a)

(1 — R(le)TO(k’ 9)

’f‘(k,‘, 9) = Ro; + 1T ROlTo(k, 0) . (35
Thus
_ T(k, 0) e R01
ro(k, 6) = 1 e (r 0 (36)
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Fig. 3. The equivalent transmission line junction network of the permittivity
profile discontinuity and a continuous lossy medium whose permittivity profile
is continuous at the interface z = 0.
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Fig. 4. A discontinuous lossy medium whose permittivity profile has two
discontinuities at * = 0 and x = L.

On the other hand, r¢(k, 6) is the reflection coefficient of
the continuous medium shown in Fig. 3(b) whose permittivity
profile is continuous at the interface = 0. So from the similar
derivation to Case A, we can directly write out

—a(z)]  de(z)
Ro (2, 0) = _8[6?:§)E s(;én;va}:%/z iz(gf 37
RH t,0) = — [e(x) — 25in’8] exp [—a(x)] de(x) (38)

8e(x)[e(z) — sin®0)3/2  dz

where RJ-(t ) and R”(t ) are the inverse Fourier trans-
forms of - (k, 6), respectively.

In fact, when ¢(0) = 1 then Ry; = 0, further ro(k, 8) =
r(k, ). Thus (37) and (38) reduce to (31) and (32). That
is to say, (37) and (38) are the general forms of reflection
coefficients.

C. The Permittivity Profile has Two Discontinuities
at the Interfaces © = O and © = L

We consider a general case. The permittivity profile has
two discontinuities at the interfaces z = 0 and 2 = L, as
shown in Fig. 4. In this case, the medium can be equivalent
to two microwave transmission line junctions cascaded with a
microwave network, as shown in Fig. 5. Here, the first junction
network is the same as that in Fig. 3(a). The second is the
equivalent network of the second discontinuity at x = L, and

\/ (L) — sin®0 — 1/e3 — sin®

(39
1/ €(L) — sin®f + /€3 — sin®
Rl — e3y/€(L) — sin’0 — e(L)v/e3 — sin’@ “0)

127 -
e3¢/ €e(L) — sin? + e(L)v/e3 — sin®@

corresponding to TE wave and TM wave, respectively.
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Fig. 5. The equivalent microwave network of the discontinuous lossy medium.
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Fig. 6. A continuous lossy medium.

In Fig. 5, s,;(k) represents the .S scattering parameter of the
network which describes the continuous permittivity profile
shown in Fig. 6. Through the microwave network theory,
s11(k) is just the reflection coefficient of the continuous
medium shown in Fig. 6 when the electromagnetic wave
is incident from the left to the right. So carrying out the
discussion in Case A, we have

Lar
811(1{2)—/0 Eexp[—

where 9€ = 0 when z > L has been considered.

Similarly, s22(k) is the reflection coefficient of the continu-
ous medium when the electromagnetic wave is incident from
the right to the left. Hereby

a(z)|exp [-j2ky(x)]dz  (41)

sma(k) = = [ Fexp (~la(L) ~ a(@))

exp {—j2k[y(L) — y(z)]} dz  (42)
where a(L) and y(L) are expressed by (26) and (27) when
z = L. Substituting (23) and (24) into (41) and (42) yields
the expressions of s1;(k) and sgg(k) for TE wave and TM
wave, respectively.

On the other hand, s21(k) represents the transmission co-

efficient of the continuous medium from x = 0 to © = L, so
we obtain from (11) and (12)

N L
$57 = €XPp {_%ln_ﬁ%%} exp [—jkfo n(z’) da:'] (43)

sl —exp{ 1l %}exp l—jk/OLn(a;’)da;’].

(44

Similarly, from (15) and (16), we have

sﬁ:exp{ ln%}exp[ jk/

~ L
sly = exp {%ln %%} exp [—jk/o n(x’)dm’}. (46)

Therefore, the multiplication

) da’ } (45)

51983 = 5!2521 = exp { ]2k/ n(z')d ] 47

Under the high frequency and low loss approximation, (22),
the above equation can be written as

s12(k)s21(k) = exp [o(L)] exp [—j2ky(L)]  (48)
which is suitable for both TE wave and TM wave.

Through the microwave network theory, we obtain from
Fig. 5

R E)soy(k
ro(k, 0) = s11(k) + %)—) (49)
T(k7 9) — M (50)

1+ Roiro(k, 6)

which are the reflection coefficients of the general medium. To
derive the inverse Fourier transform of ro(k, ), we rewrite
(49) as

7"0(]% 9) = 311(]{/') + Rlzslz(k,‘)821(k§)

[1 + Rlzszz(k) + R QSQQ(IC) -+ - ] (&3]

Taking the inverse Fourier transform of the above equation,
and considering the expression (48), we have

Ro(t, (9) = Sll(t) + Ri2 exp [—a(L)]{5(t) + R12522(t)
+R%25222(t) * ng(t) b0t -T) (52)
where Ro(f, ), S11(f) and Si(t) are the inverse

Fourier transforms of ro(k, #), s11(k) and s22(k), where
exp [—a(L)]6(t — T) is the inverse Fourier transform of

s12(k)s21(k), where 6(¢) is Dirac-6 function, “x” represents
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convolution, and where

L
T=2y(L) = 2/0 \/ () — sin6 dz.

Through the convolution theory f(¢) « 6(t — T) = f(t — T),
we infer from (52)

(53)

Ro(t, 0) = S11(t) when 0 < ¢t < T. (54)
Considering (41), yield
Sty = —<eo@] fl_F (55)
24/ e(z) — sin®9 “*
which gives
n _ __exp[-a(z)] de(z)
Ry (&, 6) = 8le(z) — sin?0)3/2  dz (56)
.92 )
Rl g) - L) = 2sn*fexpa(o)] de(e) o

8¢(z)[e(z) — sin4]3/2 dx

when 0 < ¢t < T.

III. RECONSTRUCTION OF THE LOSSY MEDIUM

A. Reconstruction of the Permittivity Profile

In the inhomogeneous lossy medium shown in Fig. 1, if
the conductivity profile is known, we will reconstruct the
permittivity profile by using either the reflection coefficient of
TE incident wave or TM incident wave. We select the former.
From (37), we have

de(z)

Ry (t, 0) exp [a(x)]dt = —m

(58
where (28) is considered. Integrating the above equation,
yields

e(z) = sin®@ + [€(0) — sin®4]

-exp {_4 /O th(t/, 8) exp [av(z")] dt’} (59)

which is the reconstruction formula of the permittivity profile,
where ¢ and a(x) are expressed as (28) and (26), respectively.

When the permittivity profile of the lossy medium has a
discontinuity at x = L, the inverse Fourier transforms of the
reflection coefficients are of the same forms as (37) and (38)
in the region 0 < ¢ < 7', as shown in (56) and (57). So the
inversion formula (59) is also suitable for the discontinuous
medium.

From the form of (59) we will note that it is a coupling
equation, because the right term of the equation contains the
unknown function e(x). But in fact all the used e(z’) in the
right term satisfy z' < x, which have been reconstructed.
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Fig. 7. Reconstruction results (solid lines) and their comparisons with exact
profiles (dashed lines). (a) n = 1, noo(z) = 0.1, (b) n = 2. noo(x) = 0.1,
(cy n = 3, noo(x) = 0.1.

Thus, so long as €(0) is known, e(z) will be completely
reconstructed.

We cite a special case. When 6 = 0° and o(z) = 0, (59)
will reduce to

e(z) = €(0) exp {—4/;1%3(#) dt’}.

Furthermore, when ¢(0) = 1, then Ry = 0, and Ry () =
R (t), the above equation turns

e(z) = exp [—4/()tRL(t’) dt’]

which is just the reconstruction formula in reference [14].

(60)

(61)

B. Reconstruction of both the Permittivity
and Conductivity Profiles

For the inhomogeneous lossy medium, if the permittivity
and conductivity profiles are simultaneously reconstructed,
both reflection coefficients of TE incident wave the TM
incident wave are used. From (37) and (38), we obtain

25in?0 R (¢, 0
(=)= ; (n )
Ri-(t, 8) + Ry(t, 0)

(62)
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exp [—a(x)] = —8Ry (¢, 0)[e(x) — sin®0]*/?/ [%} (63)

Considering (26), we have

moolz) = —/el) - sin’0-
-{ln Ry (t, 9)[e(x)—sin20]3/2/{$} } (64)

X
where, the relationship between ¢ and « is also shown in (28).
Similarly, the inversion formulas (62) and (64) are also
suitable for the discontinuous lossy medium.

C. Reconstruction of the Permittivity at the Interface

In the reconstruction formulas (59), (60), (62), and (64), the
right terms contain €(0) directly or implicitly. Therefore, if
¢(z) and o(z) are completely reconstructed, €(0) should be
inverted first.

For a lossless medium, Hopcraft and Smith [18] have
presented a method to reconstruct €(0). We extended the
method to the lossy case in [19].

It has been shown that, in the high frequency region, plotting
the real and imaginary parts of the reflection coefficients of
the lossy medium shown in Fig. 4 as a function of the wave
number £ yields a circle. From the intercept a and the radius
b of the circle, the permittivity at the interface, ¢(0) can be
reconstructed. When the incident wave is TE polarized, the
inversion formula is [19]

2
€(0) = sin®# + cos?6 (%Z) (65)
where
¢= %[(bQ @ N+ VP @14 (66)
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which is suitable for both continuous profile and discontinuous
profile.

IV. RECONSTRUCTION EXAMPLES

In this section, several examples are used to demonstrate the
inverse scattering scheme. In these examples, the left spaces
of the reconstructed media are all free space.

First, we consider the reconstruction of the permittivity
profile by using (59). The reflection data are simulated by
a numerical method from the exact profiles

e(x) =¢e1 + (&2 —61)(£)n, 0<z<L

T (67)

and the inverse Fourier transforms are obtained by FFT
program. When we set n = 1, 2, and 3, the reconstructed
results are shown in Fig. 7. Here, the medium is divided into
100 parts to compute the reflection coefficients numerically,
and the wave number is chosen as k& € [0, 10]. In the FFT
program, we set NV = 1024. Fig. 7 also gives the exact profiles
for comparisons.

From Fig. 7, our reconstruction results are accurate in any
case, including the case of strong scattering. However, Fig. 7
only gives the reconstructions of monotonous profiles. Next,
we consider a general case where the reflection coefficients
used for reconstruction are simulated by numerical method
from the exact profile

e(r) = Az® + Bz + C. (68)
When the parameters A, B, and C are chosen as different

values, the reconstructed profiles and exact profiles are shown
in Fig. 8.
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From Fig. 8, the reconstruction results are accurate no
matter when the permittivity profile has a maximum or a
minimum, as demonstrated in Fig. 8.

Both examples above are concerned for continuous profiles.
If the permittivity profile has a discontinuity at z = L, the
reconstruction results from (59) are displayed in Fig. 9.

From Fig. 9, the reconstructed profiles are also accurate
compared with the given exact profiles in any case. That is to
say, the inversion formula (59) is suitable for both continuous
profile and discontinuous profile under the weak scattering
condition and strong scattering condition.

Next, we consider the simultaneous reconstruction of per-
mittivity and conductivity profiles by using (62) and (64). In
this case, both the reflection coefficients of TE wave and TM
wave should be used. To show the availability of the two
inversion formulas, we first consider an artificial closed form
example.

Suppose the reflection coefficients of an unknown lossy
medium are expressed as

L 1
LD (k, §) = B 4+ LD

= 1= AL (69)

where L and || represent TE polarized and TM polarized,
respectively. And

| cosf —a?

= — 70

Z cos § + a2 (70)
4 2 — 2

gl = {a* +sin” #) cos 0 — a 7D

~ (a* +sin? ) cos 0 + a2

L
L x exp (— o) .2 2 2
I __/O T exp | iy kol +30%) | do (72)
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Il /L (22 + a?)? — sin®f z exp (—ax)
T Jo (@2 4a2)? +sin’0  2? +a?

2
-exp —jgkx(x2+3a2) dz (73)

where @ > 0, L > 0, a > 0, they are all constants. Through
(66) and (65), we obtain

€(0) = a* + sin’6. (74)
Substituting it into (36) yields
vk, 0) =T+, 7k, 0)=1. (75)
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Fig. 12. Reconstruction results (solid lines) and their comparisons with exact
profiles (dashed lines) when n» = 2. (a) Permittivity, (b) conductivity.

Using a variable transformation, we obtain from (72) and (73)

_az:exp(—ozap)2

L _

RO (t7 9) - 2(332 n az) (76)
2 ,2\2 _ in?
+ a*)? — sin“d xexp (—ax)
Rl gy =& 77
olt 6) (22 + a2)? + sin’f 2(z? + a?)? a7
in which
2

t= §:U(a:2 + 3a?). (78)
Substituting (76) and (77) into (62) and (64), we can derive
e(z) = (22 +a®)* + sin6 (79)
noo(z) = a(z? + a?) (80)

which are the permittivity and conductivity profiles corre-
sponding to the reflection coefficients (69). When ¢ = 3, o =
0.2, L = 1 and 8 = 45°, we calculate the reflection coef-
ficients from the profiles given in (79) and (80) by using a
numerical method. The calculated reflection data and the given
reflection data by (69) to (72) are displayed in Fig. 10, which
fit very well. This artificial example shows that the inversion
formulas (62) and (64) are correct.

To show the applicability of the above formulas, we consider
a numerical example. The reflection coefficients used for
reconstruction are simulated from the following exact profiles

€(z) = €1 + (2 — eﬂ(%)n,

o(x) = o1+ (02 — aQ(%)n

When n = 1 and 2, the reconstructed profiles are displayed in
Figs. 11 and 12, where we set § = 60°, k € [0, 10].

1)
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From Figs. 11 and 12, the reconstructed profiles are much
accurate compared with the exact profiles when the loss is low.
As the loss of the medium equals zero, the inversion formulas
are also true.

V. CONCLUSION

In this paper, we proposed a novel inverse scattering scheme
to reconstruct the permittivity profile and the conductivity
profile of an inhomogeneous lossy medium by using a mi-
crowave networking technique. This scheme is suitable for
both continuous and discontinuous profiles. Reconstruction
examples show that the novel scheme is accurate, even if
strong scattering conditions are satisfied.
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